

Consequences of patient heterogeneities for intermediate energy sources in post-implant assessment of prostate brachytherapy plans

Gabriel Famulari, Marc-André Renaud, Emilie Soisson, Marie Duclos, Shirin A. Enger

Medical Physics Unit, McGill University

Heterogeneity corrections

Model-based dose calculation algorithms (MBDCA) are commercially available for brachytherapy dosimetry:

> MC

- GBBS (ACUROS BV, Varian)
- CCC (ACE, Elekta)

Lemaréchal et al., 2015

MBDCA account for:

- Tissue heterogeneities
- Interseed attenuation
- Applicator heterogeneities (high-Z shielding)

Alternative HDR sources

Brachytherapy can be administered by:

- low energy sources (E < 50 keV) -> LDR
- intermediate energy sources (50 keV < E < 200 keV)
- high energy sources (E > 200 keV) -> HDR

Recently, sources in the high (⁶⁰Co, ⁷⁵Se) and intermediate (¹⁶⁹Yb, ¹⁵³Gd) energy range have been proposed as alternatives to ¹⁹²Ir for HDR BT

Tissue composition and heterogeneities ignored -> errors in dosimetric indices

	⁶⁰ Co	¹⁹² lr	⁷⁵ Se	¹⁶⁹ Yb	¹⁵³ Gd
Decay mode	β-	β-, IC	β-	β-	β-
Half-life (days)	1925	73.8	119.8	32.0	240.4
Mean γ energy (keV)	1250	360	210	93	60
HVL (mm Pb)	11	3	0.7	0.2	0.08
Activity to obtain $\dot{D}(\mathbf{r}_0, \boldsymbol{\theta}_0)$ A (Ci)	3.1	10	-	3.1	180

Aim: Determine the impact of tissue heterogeneities for alternative sources.

Materials and Methods

DICOM-RT (CT, RS, RP, RD)

Geant4-based MC dose calculation engine

- Simulates nuclear decay
- Accounts for density and material composition of tissues, applicators, sources
- Track length estimator
- Variable scoring mesh

OUTPUT:

- D_{w.w}
- D_{m,m}

Column generation based optimizer

Source characteristics

Prostate case

Advantages of intermediate energy sources:

- ✓ Optimal depth dose profiles (better target homogeneity)
- ✓ Reduced shielding requirements
- ✓ Suitable to deliver intensity modulated brachytherapy (IMBT)

6

Dosimetric impact

Dosimetric impact

Small impact on prescription dose

Reduction in urethral dose by 1-6%

Dosimetric impact

Reduction in dose to bladder and rectum by 1-4%

 \triangleleft

Conclusions

- Intermediate energy sources have the potential to increase dose homogeneity within the PTV while limiting hot spots in the bladder, rectum and urethra.
- The ignorance of soft tissue heterogeneities resulted in overestimation of the dose delivered to OARs and underestimation of dose to bone.
 - Especially true for intermediate energy sources.
- There is still debate on whether differences are significant or not compared to other uncertainties in brachytherapy.
 - Dose delivery accuracy within ~5% (k=1)
 - Includes source-to-detector position, material composition, TPS, source specs
- Intermediate energy sources have yet to be introduced in the clinic...
 - ... there is still time to implement and validate MBDCAs for intermediate energies.

Acknowledgements

Special thanks:

- Dr. Shirin Enger
- Marc-André Renaud
- Dr. Emilie Soisson
- Dr. Marie Duclos
- Dr. Jan Seuntjens
- MPU students and staff

The authors acknowledge partial support by the CREATE Medical Physics Research Training grant of the Natural Sciences and Engineering Research Council (grant number: 432290)

2017-10-16 Gabriel Famulari Acknowledgements 11